Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis

نویسندگان

  • Maria K. Ali
  • Xinfeng Li
  • Qing Tang
  • Xiaoyu Liu
  • Fang Chen
  • Jinfeng Xiao
  • Muhammad Ali
  • Shan-Ho Chou
  • Jin He
چکیده

Kdp-ATPase is an inducible high affinity potassium uptake system that is widely distributed in bacteria, and is generally regulated by the KdpD/KdpE two-component system (TCS). In this study, conducted on Mycobacterium smegmatis, the kdpFABC (encoding Kdp-ATPase) expression was found to be affected by low concentration of K+, high concentrations of Na+, and/or [Formula: see text] of the medium. The KdpE was found to be a transcriptional regulator that bound to a specific 22-bp sequence in the promoter region of kdpFABC operon to positively regulate kdpFABC expression. The KdpE binding motif was highly conserved in the promoters of kdpFABC among the mycobacterial species. 5'-RACE data indicated a transcriptional start site (TSS) of the kdpFABC operon within the coding sequence of MSMEG_5391, which comprised a 120-bp long 5'-UTR and an open reading frame of the 87-bp kdpF gene. The kdpE deletion resulted in altered growth rate under normal and low K+ conditions. Furthermore, under K+ limiting conditions, a single transcript (kdpFABCDE) spanning kdpFABC and kdpDE operons was observed. This study provided the first insight into the regulation of kdpFABC operon by the KdpD/KdpE TCS in M. smegmatis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation

Two-component signal transduction constitutes the predominant strategy used by bacteria to adapt to fluctuating environments. The KdpD/KdpE system is one of the most widespread, and is crucial for K+ homeostasis. In Escherichia coli, the histidine kinase KdpD senses K+ availability, whereas the response regulator KdpE activates synthesis of the high-affinity K+ uptake system KdpFABC. Here we sh...

متن کامل

Dynamics of an Interactive Network Composed of a Bacterial Two-Component System, a Transporter and K+ as Mediator

KdpD and KdpE form a histidine kinase/response regulator system that senses K(+) limitation and induces the kdpFABC operon, which encodes a high-affinity K(+) uptake complex. To define the primary stimulus perceived by KdpD we focused in this study on the dynamics of the Kdp response. Escherichia coli cells were subjected to severe K(+) limitation, and all relevant parameters of the Kdp respons...

متن کامل

The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence

The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K(+)) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdu...

متن کامل

Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter

UNLABELLED Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we...

متن کامل

Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli.

The membrane-bound histidine kinase KdpD is a putative turgor sensor that regulates, together with the response regulator KdpE, expression of the kdpFABC operon. This operon encodes the high affinity K+-uptake system KdpFABC of Escherichia coli. Expression of kdpFABC is induced under K+ limiting growth conditions and in response to an osmotic upshift. Various structural features of KdpD and Kdp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017